3.239 \(\int \frac{\text{csch}^2(c+d x)}{a-b \sinh ^4(c+d x)} \, dx\)

Optimal. Leaf size=139 \[ -\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a}-\sqrt{b}} \tanh (c+d x)}{\sqrt [4]{a}}\right )}{2 a^{5/4} d \sqrt{\sqrt{a}-\sqrt{b}}}+\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a}+\sqrt{b}} \tanh (c+d x)}{\sqrt [4]{a}}\right )}{2 a^{5/4} d \sqrt{\sqrt{a}+\sqrt{b}}}-\frac{\coth (c+d x)}{a d} \]

[Out]

-(Sqrt[b]*ArcTanh[(Sqrt[Sqrt[a] - Sqrt[b]]*Tanh[c + d*x])/a^(1/4)])/(2*a^(5/4)*Sqrt[Sqrt[a] - Sqrt[b]]*d) + (S
qrt[b]*ArcTanh[(Sqrt[Sqrt[a] + Sqrt[b]]*Tanh[c + d*x])/a^(1/4)])/(2*a^(5/4)*Sqrt[Sqrt[a] + Sqrt[b]]*d) - Coth[
c + d*x]/(a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.181358, antiderivative size = 139, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {3217, 1287, 1130, 208} \[ -\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a}-\sqrt{b}} \tanh (c+d x)}{\sqrt [4]{a}}\right )}{2 a^{5/4} d \sqrt{\sqrt{a}-\sqrt{b}}}+\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a}+\sqrt{b}} \tanh (c+d x)}{\sqrt [4]{a}}\right )}{2 a^{5/4} d \sqrt{\sqrt{a}+\sqrt{b}}}-\frac{\coth (c+d x)}{a d} \]

Antiderivative was successfully verified.

[In]

Int[Csch[c + d*x]^2/(a - b*Sinh[c + d*x]^4),x]

[Out]

-(Sqrt[b]*ArcTanh[(Sqrt[Sqrt[a] - Sqrt[b]]*Tanh[c + d*x])/a^(1/4)])/(2*a^(5/4)*Sqrt[Sqrt[a] - Sqrt[b]]*d) + (S
qrt[b]*ArcTanh[(Sqrt[Sqrt[a] + Sqrt[b]]*Tanh[c + d*x])/a^(1/4)])/(2*a^(5/4)*Sqrt[Sqrt[a] + Sqrt[b]]*d) - Coth[
c + d*x]/(a*d)

Rule 3217

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Tan[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[(x^m*(a + 2*a*ff^2*x^2 + (a + b)*ff^4*x^4)^p)/(1 + ff^2
*x^2)^(m/2 + 2*p + 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p]

Rule 1287

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[Ex
pandIntegrand[((f*x)^m*(d + e*x^2)^q)/(a + b*x^2 + c*x^4), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b^
2 - 4*a*c, 0] && IntegerQ[q] && IntegerQ[m]

Rule 1130

Int[((d_.)*(x_))^(m_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[(
d^2*(b/q + 1))/2, Int[(d*x)^(m - 2)/(b/2 + q/2 + c*x^2), x], x] - Dist[(d^2*(b/q - 1))/2, Int[(d*x)^(m - 2)/(b
/2 - q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && GeQ[m, 2]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\text{csch}^2(c+d x)}{a-b \sinh ^4(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (1-x^2\right )^2}{x^2 \left (a-2 a x^2+(a-b) x^4\right )} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \left (\frac{1}{a x^2}+\frac{b x^2}{a \left (a-2 a x^2+(a-b) x^4\right )}\right ) \, dx,x,\tanh (c+d x)\right )}{d}\\ &=-\frac{\coth (c+d x)}{a d}+\frac{b \operatorname{Subst}\left (\int \frac{x^2}{a-2 a x^2+(a-b) x^4} \, dx,x,\tanh (c+d x)\right )}{a d}\\ &=-\frac{\coth (c+d x)}{a d}+\frac{\left (\left (\sqrt{a}+\sqrt{b}\right ) \sqrt{b}\right ) \operatorname{Subst}\left (\int \frac{1}{-a-\sqrt{a} \sqrt{b}+(a-b) x^2} \, dx,x,\tanh (c+d x)\right )}{2 a d}+\frac{\left (\left (1-\frac{\sqrt{a}}{\sqrt{b}}\right ) b\right ) \operatorname{Subst}\left (\int \frac{1}{-a+\sqrt{a} \sqrt{b}+(a-b) x^2} \, dx,x,\tanh (c+d x)\right )}{2 a d}\\ &=-\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a}-\sqrt{b}} \tanh (c+d x)}{\sqrt [4]{a}}\right )}{2 a^{5/4} \sqrt{\sqrt{a}-\sqrt{b}} d}+\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a}+\sqrt{b}} \tanh (c+d x)}{\sqrt [4]{a}}\right )}{2 a^{5/4} \sqrt{\sqrt{a}+\sqrt{b}} d}-\frac{\coth (c+d x)}{a d}\\ \end{align*}

Mathematica [A]  time = 0.813646, size = 143, normalized size = 1.03 \[ \frac{\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\left (\sqrt{a}+\sqrt{b}\right ) \tanh (c+d x)}{\sqrt{\sqrt{a} \sqrt{b}+a}}\right )}{\sqrt{\sqrt{a} \sqrt{b}+a}}+\frac{\sqrt{b} \tan ^{-1}\left (\frac{\left (\sqrt{a}-\sqrt{b}\right ) \tanh (c+d x)}{\sqrt{\sqrt{a} \sqrt{b}-a}}\right )}{\sqrt{\sqrt{a} \sqrt{b}-a}}-2 \coth (c+d x)}{2 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[Csch[c + d*x]^2/(a - b*Sinh[c + d*x]^4),x]

[Out]

((Sqrt[b]*ArcTan[((Sqrt[a] - Sqrt[b])*Tanh[c + d*x])/Sqrt[-a + Sqrt[a]*Sqrt[b]]])/Sqrt[-a + Sqrt[a]*Sqrt[b]] +
 (Sqrt[b]*ArcTanh[((Sqrt[a] + Sqrt[b])*Tanh[c + d*x])/Sqrt[a + Sqrt[a]*Sqrt[b]]])/Sqrt[a + Sqrt[a]*Sqrt[b]] -
2*Coth[c + d*x])/(2*a*d)

________________________________________________________________________________________

Maple [C]  time = 0.059, size = 135, normalized size = 1. \begin{align*} -{\frac{1}{2\,da}\tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-{\frac{1}{2\,da} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}}-{\frac{b}{da}\sum _{{\it \_R}={\it RootOf} \left ( a{{\it \_Z}}^{8}-4\,a{{\it \_Z}}^{6}+ \left ( 6\,a-16\,b \right ){{\it \_Z}}^{4}-4\,a{{\it \_Z}}^{2}+a \right ) }{\frac{{{\it \_R}}^{4}-{{\it \_R}}^{2}}{{{\it \_R}}^{7}a-3\,{{\it \_R}}^{5}a+3\,{{\it \_R}}^{3}a-8\,{{\it \_R}}^{3}b-{\it \_R}\,a}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -{\it \_R} \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(d*x+c)^2/(a-b*sinh(d*x+c)^4),x)

[Out]

-1/2/d/a*tanh(1/2*d*x+1/2*c)-1/2/d/a/tanh(1/2*d*x+1/2*c)-1/d/a*b*sum((_R^4-_R^2)/(_R^7*a-3*_R^5*a+3*_R^3*a-8*_
R^3*b-_R*a)*ln(tanh(1/2*d*x+1/2*c)-_R),_R=RootOf(a*_Z^8-4*a*_Z^6+(6*a-16*b)*_Z^4-4*a*_Z^2+a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{2}{a d e^{\left (2 \, d x + 2 \, c\right )} - a d} - 4 \, \int \frac{b e^{\left (6 \, d x + 6 \, c\right )} - 2 \, b e^{\left (4 \, d x + 4 \, c\right )} + b e^{\left (2 \, d x + 2 \, c\right )}}{a b e^{\left (8 \, d x + 8 \, c\right )} - 4 \, a b e^{\left (6 \, d x + 6 \, c\right )} - 4 \, a b e^{\left (2 \, d x + 2 \, c\right )} + a b - 2 \,{\left (8 \, a^{2} e^{\left (4 \, c\right )} - 3 \, a b e^{\left (4 \, c\right )}\right )} e^{\left (4 \, d x\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^2/(a-b*sinh(d*x+c)^4),x, algorithm="maxima")

[Out]

-2/(a*d*e^(2*d*x + 2*c) - a*d) - 4*integrate((b*e^(6*d*x + 6*c) - 2*b*e^(4*d*x + 4*c) + b*e^(2*d*x + 2*c))/(a*
b*e^(8*d*x + 8*c) - 4*a*b*e^(6*d*x + 6*c) - 4*a*b*e^(2*d*x + 2*c) + a*b - 2*(8*a^2*e^(4*c) - 3*a*b*e^(4*c))*e^
(4*d*x)), x)

________________________________________________________________________________________

Fricas [B]  time = 2.28628, size = 2840, normalized size = 20.43 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^2/(a-b*sinh(d*x+c)^4),x, algorithm="fricas")

[Out]

-1/4*((a*d*cosh(d*x + c)^2 + 2*a*d*cosh(d*x + c)*sinh(d*x + c) + a*d*sinh(d*x + c)^2 - a*d)*sqrt(((a^3 - a^2*b
)*d^2*sqrt(b^3/((a^7 - 2*a^6*b + a^5*b^2)*d^4)) + b)/((a^3 - a^2*b)*d^2))*log(b^2*cosh(d*x + c)^2 + 2*b^2*cosh
(d*x + c)*sinh(d*x + c) + b^2*sinh(d*x + c)^2 + 2*(a^4 - a^3*b)*d^2*sqrt(b^3/((a^7 - 2*a^6*b + a^5*b^2)*d^4))
- b^2 + 2*((a^5 - a^4*b)*d^3*sqrt(b^3/((a^7 - 2*a^6*b + a^5*b^2)*d^4)) - a^2*b*d)*sqrt(((a^3 - a^2*b)*d^2*sqrt
(b^3/((a^7 - 2*a^6*b + a^5*b^2)*d^4)) + b)/((a^3 - a^2*b)*d^2))) - (a*d*cosh(d*x + c)^2 + 2*a*d*cosh(d*x + c)*
sinh(d*x + c) + a*d*sinh(d*x + c)^2 - a*d)*sqrt(((a^3 - a^2*b)*d^2*sqrt(b^3/((a^7 - 2*a^6*b + a^5*b^2)*d^4)) +
 b)/((a^3 - a^2*b)*d^2))*log(b^2*cosh(d*x + c)^2 + 2*b^2*cosh(d*x + c)*sinh(d*x + c) + b^2*sinh(d*x + c)^2 + 2
*(a^4 - a^3*b)*d^2*sqrt(b^3/((a^7 - 2*a^6*b + a^5*b^2)*d^4)) - b^2 - 2*((a^5 - a^4*b)*d^3*sqrt(b^3/((a^7 - 2*a
^6*b + a^5*b^2)*d^4)) - a^2*b*d)*sqrt(((a^3 - a^2*b)*d^2*sqrt(b^3/((a^7 - 2*a^6*b + a^5*b^2)*d^4)) + b)/((a^3
- a^2*b)*d^2))) - (a*d*cosh(d*x + c)^2 + 2*a*d*cosh(d*x + c)*sinh(d*x + c) + a*d*sinh(d*x + c)^2 - a*d)*sqrt(-
((a^3 - a^2*b)*d^2*sqrt(b^3/((a^7 - 2*a^6*b + a^5*b^2)*d^4)) - b)/((a^3 - a^2*b)*d^2))*log(b^2*cosh(d*x + c)^2
 + 2*b^2*cosh(d*x + c)*sinh(d*x + c) + b^2*sinh(d*x + c)^2 - 2*(a^4 - a^3*b)*d^2*sqrt(b^3/((a^7 - 2*a^6*b + a^
5*b^2)*d^4)) - b^2 + 2*((a^5 - a^4*b)*d^3*sqrt(b^3/((a^7 - 2*a^6*b + a^5*b^2)*d^4)) + a^2*b*d)*sqrt(-((a^3 - a
^2*b)*d^2*sqrt(b^3/((a^7 - 2*a^6*b + a^5*b^2)*d^4)) - b)/((a^3 - a^2*b)*d^2))) + (a*d*cosh(d*x + c)^2 + 2*a*d*
cosh(d*x + c)*sinh(d*x + c) + a*d*sinh(d*x + c)^2 - a*d)*sqrt(-((a^3 - a^2*b)*d^2*sqrt(b^3/((a^7 - 2*a^6*b + a
^5*b^2)*d^4)) - b)/((a^3 - a^2*b)*d^2))*log(b^2*cosh(d*x + c)^2 + 2*b^2*cosh(d*x + c)*sinh(d*x + c) + b^2*sinh
(d*x + c)^2 - 2*(a^4 - a^3*b)*d^2*sqrt(b^3/((a^7 - 2*a^6*b + a^5*b^2)*d^4)) - b^2 - 2*((a^5 - a^4*b)*d^3*sqrt(
b^3/((a^7 - 2*a^6*b + a^5*b^2)*d^4)) + a^2*b*d)*sqrt(-((a^3 - a^2*b)*d^2*sqrt(b^3/((a^7 - 2*a^6*b + a^5*b^2)*d
^4)) - b)/((a^3 - a^2*b)*d^2))) + 8)/(a*d*cosh(d*x + c)^2 + 2*a*d*cosh(d*x + c)*sinh(d*x + c) + a*d*sinh(d*x +
 c)^2 - a*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)**2/(a-b*sinh(d*x+c)**4),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 2.00349, size = 28, normalized size = 0.2 \begin{align*} -\frac{2}{a d{\left (e^{\left (2 \, d x + 2 \, c\right )} - 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^2/(a-b*sinh(d*x+c)^4),x, algorithm="giac")

[Out]

-2/(a*d*(e^(2*d*x + 2*c) - 1))